Families of Meshes Minimizing P 1 Interpolation Error
نویسندگان
چکیده
For a given function, we consider a problem of minimizing the P1 interpolation error on a set of triangulations with a fixed number of triangles. The minimization problem is reformulated as a problem of generating a mesh which is quasi-uniform in a specially designed metric. For functions with indefinite Hessian, we show existence of a family of metrics with highly diverse properties. The family may include both anisotropic and isotropic metrics. A developed theory is verified with numerical examples.
منابع مشابه
Optimal Anisotropic Meshes for Minimizing Interpolation Errors in L-norm
In this paper, we present a new optimal interpolation error estimate in Lp norm (1 ≤ p ≤ ∞) for finite element simplicial meshes in any spatial dimension. A sufficient condition for a mesh to be nearly optimal is that it is quasi-uniform under a new metric defined by a modified Hessian matrix of the function to be interpolated. We also give new functionals for the global moving mesh method and ...
متن کاملOptimal anisotropic meshes for minimizing interpolation errors in Lp-norm
In this paper, we present a new optimal interpolation error estimate in Lp norm (1 ≤ p ≤ ∞) for finite element simplicial meshes in any spatial dimension. A sufficient condition for a mesh to be nearly optimal is that it is quasi-uniform under a new metric defined by a modified Hessian matrix of the function to be interpolated. We also give new functionals for the global moving mesh method and ...
متن کاملAnisotropic Mesh Adaptation for Solution of Finite Element Problems Using Hierarchical Edge-Based Error Estimates
We present a new technology for generating meshes minimizing the interpolation and discretization errors or their gradients. The key element of this methodology is construction of a space metric from edge-based error estimates. For a mesh with Nh triangles, the error is proportional to N −1 h and the gradient of error is proportional to N −1/2 h which are the optimal asymptotics. The methodolog...
متن کاملInterpolation Error Estimates for Edge Elements on Anisotropic Meshes
The classical error analysis for the Nédélec edge interpolation requires the so-called regularity assumption on the elements. However, in [18], optimal error estimates were obtained for the lowest order case, under the weaker hypothesis of the maximum angle condition. This assumption allows for anisotropic meshes that become useful, for example, for the approximation of solutions with edge sing...
متن کاملCover interpolation functions and h-enrichment in finite element method
This paper presents a method to improve the generation of meshes and the accuracy of numerical solutions of elasticity problems, in which two techniques of h-refinement and enrichment are used by interpolation cover functions. Initially, regions which possess desired accuracy are detected. Mesh improvment is done through h-refinement for the elements existing in those regions. Total error of th...
متن کامل